o Transformer Architecture: A Step-by-Step
Breakdown

This document provides a detailed breakdown of the Transformer architecture, a
revolutionary neural network model that has achieved state-of-the-art results in various
natural language processing tasks. We will explore each layer and function within the
Transformer, explaining its purpose and how it contributes to the overall model.

1. Tokenization

The first step in processing text data for a Transformer model is tokenization. This involves
breaking down the input text into smaller units called tokens. These tokens can be words,
sub-words, or even characters, depending on the specific tokenization method used.

e Purpose: To convert raw text into a numerical representation that the model can

understand.
e Methods: Common tokenization methods include:

e Word-based tokenization: Splits the text into individual words. Simple but can
lead to large vocabularies.

e Subword tokenization (e.g., Byte Pair Encoding (BPE), WordPiece): Splits
words into smaller, more frequent subwords. Balances vocabulary size and
handling of rare words.

e Character-based tokenization: Splits the text into individual characters. Smallest
vocabulary but can be less semantically meaningful.

e Example:

e |nput text: "The quick brown fox jumps over the lazy dog."

e Word-based tokens: ["The", "quick”, "brown", "fox", "jumps", "over", "the", "lazy",
"dog", "."]

e Subword tokens (hypothetical]: ['The", "quick”, "brow", "n", "fox", "jump”, "s",
"over", "the", "lazy", "dog", "."]

2. Embedding Layer

Once the text is tokenized, each token needs to be converted into a vector representation.
This is the role of the embedding layer.

e Purpose: To map each token to a high-dimensional vector space, where semantically

similar tokens are located closer to each other.
e Mechanism: The embedding layer is a lookup table that maps each token index to a

corresponding vector. These vectors are learned during the training process.
e Output: A matrix where each row represents the embedding vector for a

corresponding token in the input sequence.
e Example: If the token "quick" has an index of 5 in the vocabulary, the embedding layer

will output the vector associated with index 5.

3. Positional Encoding



Transformers, unlike recurrent neural networks (RNNs], do not inherently process sequential
data in order. Therefore, positional encoding is crucial to provide the model with information
about the position of each token in the sequence.

e Purpose: To inject information about the position of each token into its embedding
vector.

e Mechanism: Positional encodings are added to the token embeddings. These
encodings are typically generated using sine and cosine functions with different
frequencies.

e Formula:

e PE(pos, 2i] = sin(pos / (10000<sup>2i/d<sub>model</sub></sup>]]
e PE(pos, 2i+1) = cos(pos / [10000<sup>2i/d<sub>model</sub></sup>])
e where:

e pos is the position of the token in the sequence.
e j is the dimension index.
e d<sub>model</sub> is the dimensionality of the embedding vectors.
e Output: A matrix of the same shape as the embedding matrix, where each row
represents the positional encoding for the corresponding position in the sequence.
This matrix is added element-wise to the embedding matrix.

4. Transformer Block (repeated]

The core of the Transformer architecture is the Transformer block, which is repeated multiple
times. Each block consists of several sub-layers: Multi-Head Self-Attention, Add & Layer
Normalization, and a Feedforward Neural Network.

4A. Multi-Head Self-Attention

This is the most important component of the Transformer. It allows the model to attend to
different parts of the input sequence when processing each token.

e Purpose: To capture relationships between different tokens in the input sequence.
e Mechanism:

1. Linear Transformations: The input embedding vectors are linearly transformed
into three different sets of vectors: Queries (Q]), Keys (K], and Values (V).

2. Scaled Dot-Product Attention: The attention weights are calculated by taking
the dot product of the Queries and Keys, scaling the result by the square root of
the dimension of the Keys (to prevent the dot products from becoming too
large), and then applying a softmax function.

3. Weighted Sum: The attention weights are then used to compute a weighted
sum of the Value vectors.

4. Multiple Heads: This process is repeated multiple times in parallel, each with its
own set of linear transformations. The outputs of all the heads are then
concatenated and linearly transformed to produce the final output.

e Formula:
* Attention(Q, K, V] = softmax((Q K<sup>T</sup>) / v d<sub>k</sub>)V
e where:

Q is the matrix of Queries.

K is the matrix of Keys.

V is the matrix of Values.

d<sub>k</sub> is the dimension of the Keys.

e Output: A matrix representing the context-aware representation of each token in the

input sequence.



4B. Add & Layer Normalization

After the Multi-Head Self-Attention layer, the output is added to the original input (residual
connection] and then normalized using Layer Normalization.

e Purpose:
e Residual Connection: To allow the gradient to flow more easily through the

network, preventing the vanishing gradient problem.
e Layer Normalization: To stabilize the training process and improve

generalization.
e Mechanism:
e Add: The output of the Multi-Head Self-Attention layer is added to the original

input embedding vectors.
e Layer Normalization: Layer Normalization normalizes the activations of each

layer across all the features for each training example.
e Output: A normalized matrix representing the context-aware representation of each

token in the input sequence, with the original input information preserved.

4C. Feedforward Neural Network

This layer applies a feedforward neural network to each token independently.

e Purpose: To further process the context-aware representation of each token.
e Mechanism: The feedforward network typically consists of two linear transformations

with a ReLU activation function in between.
e Output: A matrix representing the further processed context-aware representation of

each token in the input sequence.

4D. Add & Layer Normalization

Similar to step 4B, the output of the Feedforward Neural Network is added to the input of the
Feedforward Neural Network (residual connection] and then normalized using Layer
Normalization.

e Purpose:
e Residual Connection: To allow the gradient to flow more easily through the

network.
e Layer Normalization: To stabilize the training process and improve

generalization.
e Mechanism:
e Add: The output of the Feedforward Neural Network is added to the input of

the Feedforward Neural Network.
e Layer Normalization: Layer Normalization normalizes the activations of each

layer across all the features for each training example.
e Output: A normalized matrix representing the final processed representation of each

token in the input sequence after the Transformer block.

5. Output/Classification Layer (Linear + Softmax]

After passing through multiple Transformer blocks, the final output is fed into an output layer,
which typically consists of a linear layer followed by a softmax function.

e Purpose: To map the final representation of each token to a probability distribution

over the possible output classes.
e Mechanism:



e Linear Layer: The linear layer transforms the final representation of each token
into a vector of logits, where each logit represents the score for a particular

output class.
e Softmax Function: The softmax function converts the logits into a probability
distribution over the output classes.

e Output: A probability distribution over the output classes for each token in the input
sequence. This distribution can be used for tasks such as text classification, machine
translation, and text generation.

In summary, the Transformer architecture leverages self-attention mechanisms and residual
connections to effectively capture long-range dependencies in sequential data. Its modular
design, with repeated Transformer blocks, allows for scalability and adaptability to various
NLP tasks. The combination of tokenization, embedding, positional encoding, self-attention,
and feedforward networks enables the Transformer to achieve state-of-the-art performance

in a wide range of applications.



